What is Collision Theory and How is it Different Than Big Bang Theory

What is Collision Theory and How is it Different Than Big Bang Theory
Page content

Universal Origins

The Big Bang is about universal origins. This event occurred 13.7 billion years ago. The Big Bang was followed by a period of inflation which stretched the boundaries all at the same time in every direction. The initial heat was so intense that it took between 300,000 and 500,000 years before this universe cooled down enough to form atoms.

The theory has been supported by a variety of experiments, not just mathematical formulas. The most prominent finding occurred in the early 60’s when two scientists, Penzias and Wilson, at Bell labs were studying microwave radiation. They built a radio telescope to detect all of the radio wavelengths in the sky. It could be rotated 360 degrees horizontally and vertically. They were successful; they eliminated all but a minute radio buzz that had a signature of about 3 degrees Kelvin. No matter where they pointed the telescope, no matter the time of day or month, the buzz was there. This radio signature turned out to be the remnants of an explosion that created the Big Bang.

Collision Theory

The Big Bang theory has been a tremendously successful cosmological model. But its biggest failures have been its inability to explain how the theory of general relativity, a theory of gravity, works with the theory of quantum mechanics, the theory of the atom. The Big Bang theory can not explain how the smallest part of the universe works with the largest part.

Several theories of multiple universes colliding have emerged to correct this problem. One of these is the Ekpyrotic model. This model is based on the hypothesis that there were two three-dimensional universes moving along a separate but hidden dimension. As these three-dimensional universes move along side of each other they collide, and the kinetic energy that is created from the impact is converted into the quarks, electrons, photons, and other elementary particles that are confined to move along the three dimensions that we see.

The resulting collision temperature is finite, in contrast to the hot big bang, and this phase begins without a singularity- central to the Big Bang theory. The universe is homogeneous(looks the same everywhere) because the collision and initiation of the collision phase occurs simultaneously everywhere. The geometry for the two worlds that meet is flat, so the collision produces a flat big bang universe. So we turn to Einstein’s equations to understand this phenomenon. His equations say that the total energy density found in the Universe will be equal to its critical density. So one way of understanding this is that one of the overabundant particles found in the early Big Bang universe, the massive magnetic monopoles, are not produced at all in this collision model because the temperature after the collision is far too small to produce any of these massive particles. The Big Bang theory produces particles that can not be found, or energies that are unexplained. Collision theory avoids those problems.

Source: A Brief Introduction to the Ekpyrotic Universe

Summary: Collision Theory a New Origin of the Universe

The Big Bang Theory has been around for about 70 years. It was formulated by the physicist Georges Lemaitre in the 1930’s. There were problems that the theory has not been able to explain, specifically about what happened at the very early stages following the explosion of the singularity where all mass was concentrated.

Big Bang Timeline

The Ekpyrotic model came out of work by Neil Turok and Paul Steinhardt in the late 1990’s. The theory states that the universe did not start in a singularity, but came about rather from the collision of two three dimensional flat spatial universes.

Image Source: Universe expansion Image Source: Timeline